Grackle & Sun

Archive for the tag “fugitive”

The Fast and the Fugitive: Pokeberry Edition

It is once again time to play…




I sandwiched the samples from each of the original pokeberry dyebaths between heavy cardboard and taped it up against a south-facing window for a month.  All yarn is 100% wool mordanted with vinegar only.  Here are the results:

Pokeberry–First Dyebath

Pokeberry Lightfastness Test Results 11-17-2012 2-25-02 PMPokeberry Lightfastness Test Results 11-17-2012 2-24-25 PM

Pokeberry–Second Dyebath (First exhaust)

Pokeberry Lightfastness Test Results 11-17-2012 2-26-29 PMPokeberry Lightfastness Test Results 11-17-2012 2-26-05 PM

Pokeberry Lightfastness Test Results 11-17-2012 2-27-47 PMPokeberry Lightfastness Test Results 11-17-2012 2-27-35 PM

Pokeberry—Third Dyebath (Second Exhaust):  These are on superwash wool.  Somehow I didn’t test the skein of regular wool from this bath.  Not sure why.

Pokeberry Lightfastness Test Results 11-17-2012 2-29-10 PMPokeberry Lightfastness Test Results 11-17-2012 2-28-43 PM

Pokeberry—Cold Dyebath

Pokeberry Lightfastness Test Results 11-17-2012 2-30-47 PMPokeberry Lightfastness Test Results 11-17-2012 2-30-05 PMSo far, I think everything is as should be expected.  We know that pokeberry is not normally lightfast, but that with proper mordanting and dyeweight ratios, can be made more so.   You can see a substantial difference in the lightfastness between the original dyebath and the two exhaust baths.  Here is the good news.  This lightfastness test was conducted in a room in my house lovingly known as The Snug, short for Snuggery, aka the Sun Room.  It is a very tiny little nook of a room made entirely of mullioned windows.  For the purposes of this post, that means that anything in the room gets not only full south-facing sun, but also east and west sun, as well.  The photos you’ve seen so far are of the side of the yarn which had direct south-facing exposure pressed right up on the glass.  The next series of photos are of the back side of the exposed yarn—the side exposed to normal daily levels of ambient light from the east and west windows.  You can just see the outlines of the direct-exposed areas.  It’s like the yarn has tan lines.  Look at this:

First Dyebath

Pokeberry Lightfastness Test Results 11-17-2012 2-25-17 PM

Second Dyebath (First Exhaust)

Pokeberry Lightfastness Test Results 11-17-2012 2-26-42 PMPokeberry Lightfastness Test Results 11-17-2012 2-28-01 PM

Third Dyebath (Second Exhaust)

Pokeberry Lightfastness Test Results 11-17-2012 2-29-23 PM

Pretty cool, huhn?  The first dyebath had almost no fading on the ambient-exposed side of the yarn.  The exhaust baths had very little.  I think this is a good sign that these pokeberry dyed yarns will stand up to regular wear in normal lighting.  I mean, it’s not like anyone is going to be wearing handknit items when the UV levels are crazy high, so I’m not terribly worried about it.  I’m particularly impressed with the cold dye process.  Not only did it dye awesomely, but it was the most lightfast out of the bunch, too.  The back side of the sample was as purple as the covered section.  It was just hard to get a good picture of it.

Next, I’ve got to get lightfastness tests of the raceme dyelots.  Gotta wait for more sun, though.  Until then,

Live happy, dye happy!

Dyeing and Science. I Have a lot of Questions and Not as Many Answers.

I’ve been having some fun discussions on Ravelry in an attempt to suss out some answers to the millionty questions buzzing around in my head about solar dyeing.  Solar dyeing is where you let the sun do the work of your stove in the dyeing process.  This is most commonly accomplished in large Mason jars, although I’ve seen solar cookers and roasting pans used, as well.  The fiber and dye (or dyestuff and water) is put all together in the container.  Then you let the jars sit out in the sun anywhere from a few hours to a few days, and bam!—you’ve got dyed yarn.   Other steps of the dyeing process can be done with the sun, as well.  The extraction process is one of these.

Right now, on my back porch, I’ve got a big jar of avocado pits stewing in a solution of ammonia and water to extract the dye.  The instructions said to put this in a sunny spot and leave it for a couple weeks.   So I did.  And right next to this big jar of wonderfully dark red-brown liquid (the extraction is working) is my collection of unmordanted control swatches from Dye Day #1 sitting in the full sun for their lightfastness test (which mostly are failing).  The other day as I was washing dishes, I looked out the window at my avocado dye and yarn swatches—I had a moment giddy squee!–and then it struck me that I was watching the sun concurrently create and destroy my dyes.  How could this be possible?  I’ve been thinking hard about this one for days now.  My conclusion?  It’s time for some science.

Here are the issues I’m pondering (please be patient as my mind wanders), and the answers I’ve got so far:

1.  Some instructions for solar dyeing say not to use plastic containers, because they do not allow enough light in.  This implies that it is the light rather than the heat that aids in the dyeing.  But I’m pretty sure that’s not true, because if it was, dyeing wouldn’t work on the stove, in a pot.  With no sun.   So perhaps they meant that it’s a matter of glass doing a better job of heating up in the sun than plastic?  I haven’t tested it, but maybe that is true.

2.  Other instructions use dark pots or roasters to dye in, which supports the idea that only the heat  matters.  Which means that solar dyeing could be done perhaps more effectively in something other than a glass jar, or at least covered with black plastic to increase the solar gain.

3.  It is very common for dyestuffs not to be lightfast on yarn without a mordant.  Is a dye in solution equally as susceptible to photodegradation as it is on unmordanted yarn?   I don’t know yet.  But I think this is a pretty crucial question to answer.

4.  Assuming a glass container is being used, if a fugitive dye is used in a solar dyeing process, even with mordanted yarn, does the longer uptake time (for the dye to adhere to the yarn) allow enough time for there to be detectable photodegradation of the dye in solution before it can dye the yarn?   I don’t know this yet, either, but the solar dyeing that I’ve seen has suggests that the process takes a much longer time.  I’ve seen experiments with one dyebath where different samples are left in for increasingly longer periods of time (up to 10 days), and the colour on the yarn just got darker and darker.

5.  Which wavelengths of sunlight are most responsible for fading of dyes on yarn or in fabrics?  The Florida Solar Energy Center had this to say about sunlight and fading of dyes on fabrics and furnishings, which I think is relevant:

Fading of interior furnishings is often attributed to ultraviolet radiation (UV) from the sun passing through windows onto interior surfaces. However, UV is not the only portion of the solar spectrum which can damage artwork or furnishings inside buildings. Virtually the whole spectrum is of concern, which is why long term exposure to solar radiation should be limited.

Ultraviolet radiation (UV) is the single largest contributing factor in fading of fabrics, carpets and other furnishings. Although visible light, electric lighting, heating, humidity, age of fabrics and fabric dyes all play a part in the process, UV radiation is attributed to 40% of the damage. Protecting against UV is not just important in hot, sunny climates. Even in cold, cloudy climates, UV radiation can damage furnishings.”

6.  So, which wavelengths can pass through glass anyway?  Apparently the answer to this can be quite variable.  It depends largely on the composition of the glass.  But for ordinary glass, like in a single pane window with no low-e coatings, the International Ultraviolet Association (yeah, there is one!) had this to say about it:

              Normal glass (as used in windows) is transparent to UV radiation up to a wavelength of about 330 nm (or UV-A light). The transparency is quite high so almost all UV-A light will pass through glass. Below 330 nm (UV-B and UV-C), almost 100% is blocked by normal glass.

Here’s how the spectrum breaks down according to Wikipedia (yes, i know it’s not really a reliable reference, but I think it’s safe this time):

Ultraviolet C or (UVC) range, spans a range of 100 to 280 nm;  Ultraviolet B or (UVB) range spans 280 to 315 nm;  Ultraviolet A or (UVA) spans 315 to 400 nm;  Visible range spans 380 to 780 nm;  Infrared range that spans 700 nm to 106 nm.

7.   If those wavelengths pass through ordinary glass, what can pass through a typical canning jar?  I don’t know for sure, but I found out that beer brewers and wine makers say that if you use a Mason jar, to keep it away from sunlight, because the UV will make a brew go bad.  So, I’m going to guess that it’s probably much like regular glass, ie it lets a lot of light and UV through.   Here is a great article that shows what wavelengths of light go through ordinary glass (in this case a glass bottle), and how it differs in coloured glass.  I’m guessing this data would be true for canning jars.

Alright.  So what do we know?  Solar dyeing relies on the heat of the sun to help extract and set the dye.   Canning jars are most likely totally transparent not only to the visible light spectrum, which plays at least a small part in photodegradation, but also to all UV-A light, which is largely responsible for photodegradation (and skunking your beer).

It seems logical, then, to do one of 3 things when solar dyeing:

1)  Use brown glass jars (and raise a toast to our beer-brewing friends)

2)  Use a dark pot or roaster

3)  Use a glass canning jar, but cover it with black plastic

The point of all this?  I really want to know if the sun will photodegrade dyes in solution.  It could play an important part of getting clearer colours when solar dyeing, and also of getting more consistent, successful results.  I think that a simple experiment would help test this.  I see two ways to do this:

1) First, do a standard heated extraction of a known fugitive dye, then dye mordanted wool with half in brown glass and half in clear glass.  This would test the dye in solution at the time of dyeing only.  I’d do a minimum of 3 days in the sun, and I would monitor and adjust the heat of each one to rule out that variable from the equation, since some dyes change according to heat.

2)  The second way would be to do a solar extraction, half in brown glass and half in clear glass.  Again, monitoring the temperature.  Then dye your mordanted wool with it in a standard heated way on the stove.   I would use the “canning” method, where you heat water in a large pot, and place your samples in their individual jars in this bath to heat them.  This would test photodegradation of the extracted solution only.

It would be interesting to see the results of this, don’t you think?

Oh, and that whole heat thing reminds me.  I was talking with my husband about this the other night—he’s a scientist—and he reminded me that pH tends to change with heat, as well.  Which got me thinking about a whole other issue:  when a dye recipe tells you to dye at a certain pH, do they want you to check that pH in the beginning, before you heat the dyebath, or once the goal temperature has been reached?  I’ve never seen anyone differentiate, but it makes a difference.   Some dyestuffs, like alkanet, are quite pH sensitive.  Alkanet must be used at a neutral pH.  Our alkanet dyebath was acidic, so we adjusted the pH to near neutral before we heated that pot.  But since pH changes with heat, and we totally forgot that little fact, we likely did not actually have a neutral dyebath once it reached a simmer.  This quite possibly effected our results.

So, does it really matter when you measure pH for natural dyeing?  Yeah, I think it might if you want consistent results.  My husband says that in his lab, he only counts the pH that is measured at the temperature needed for the experiment.  Although some dye adheres to the yarn when it’s initially dropped in, it’s typically during that hour long simmer that the bulk of the uptake happens.  In the future, I will measure and adjust pH at that point rather than at room temperature, unless I’m doing a cold process dyebath.

Alright.  Those are all my semi-scientifical thoughts for now.  I’d love for any of you who have more experience with dyeing or science to weigh in on this.  Keep the conversation flowing, keep the dyepots going!

Post Navigation